QUINTESSENTIAL COSMOLOGY AND COSMIC ACCELERATION

PAUL J. STEINHARDT
Department of Physics
Princeton University

1. Introduction

Quintessence [1, 3] and the cosmological constant [4] are unanticipated and
unwanted energy components from the point-of-view of both cosmologists
and high energy physicists. Yet, confirming either would undoubtedly be
one of the most important discoveries in both fields and would produce new
links between the two.

For cosmology, the discovery of a new energy component would finally
balance the energy budget, making the total energy content of the universe
equal to the critical density predicted by inflation [5, 6, 7, 8]. The fact
that the energy component has negative pressure and causes the universe
to accelerate has a subtle but numerically significant impact on the past
evolution of the universe and large-scale structure formation, resolving nu-
merous difficulties with the standard cold dark matter model. The dramatic
impact is on the future history of the universe. For decades, the common
view was that the universe is decelerating due to the self- gravitation of
matter and radiation. The only issue seemed to be whether the decelera-
tion is sufficient to halt the expansion and cause the universe to contract
to a big crunch, or whether the deceleration is too meager and the universe
continues to expand at a slower and slower rate. Now, the evidence indi-
cates that neither scenario is correct. The expansion is speeding up, driven
by a mysterious form of dark energy that will ultimately overwhelm the
universe.

For fundamental physics, quintessence or a cosmological constant rep-
resents new, ultra-low energy phenomena beyond the standard model. If
firmly established by future observations, the discovery will be recognized
as a fantastic, valuable hint about the ultimate, unified theory. The fact
that the component can be probed observationally is an added bonus, espe-
cially since many predictions of unified theories entail high energies beyond



the realm of experiment.

Moreover, just as the Copernican revolution changed forever the view of
our place in the universe, the discovery of cosmic acceleration will change
the view of our place in time. In the static universe picture, what we see in
the universe today is representative of the universe as it always has been
and always will be. In the big bang picture, the universe has been under-
going steady evolution from a simple, uniform, cosmic soup of elementary
particles to ever more complex structure, in close analogy to biological evo-
lution. The view of the universe emerging today is that the universe as we
know it is only a brief interlude between two periods of cosmic acceleration
powered by negative pressure, inflation at early times and now acceleration
once again. Life, the stars, the galaxies, and large-scale structure are com-
pletely ephemeral phenomena in the course of cosmic history, a momentary
spark in an accelerating universe.

The evidence for cosmological acceleration is presented in Sec. II. We
show how three distinct types of observations currently indicate cosmic
acceleration. In Sec. III, we turn to the two competing theoretical expla-
nations for explaining what powers the cosmic acceleration: either an inert
vacuum density (or cosmological constant) or a dynamical, quintessence
component. We focus particularly on the progress that has been made in
developing quintessence from a rather artificial and ill-defined concept into
a promising and well-motivated possibility. Perhaps the most important
motivation for considering quintessence is the cosmic coincidence problem:
why has cosmic acceleration begun at this particular moment in cosmic
history? If acceleration had begun a little earlier, structure would never
have formed in the universe, and, if acceleration had begun a little later,
we would not detect it today. For this timing of the acceleration to occur,
it must be that the matter density and dark energy density just happen to
coincide (nearly) today even though they decrease at substantially different
rates as the universe expands. The cosmological constant proposal offers lit-
tle insight into the coincidence. However, some very promising ideas have
emerged from the study of quintessence — tracker fields and creeper fields
— which partially address the coincidence problem. In Sec. IV, the current
observational status of quintessence will be summarized, and the future
prospects for distinguishing quintessence from a cosmological constant will
be discussed. In Sec. V, we outline some of the remaining theoretical chal-
lenges.

2. The evidence for cosmic acceleration

The most impressive aspect of the case for cosmic acceleration is that
three separate lines of evidence have arisen which simultaneously lead



us to the same startling conclusion [9]. Although the supernovae results
[10, 11, 12, 13] are what first captured the attention of the broad scien-
tific community, strong evidence already existed beforehand [19] and other
kinds of measurements may ultimately provide the most reliable test in the
future.

Direct evidence of accelerated expansion: Accelerated expansion produces a
systematic deviation from the linear Hubble law at large red shift. Attempts
to measure the deceleration parameter and higher order non-linearities have
been a goal of cosmology for decades, and promising techniques have been
explored, only to be foiled by unforeseen evolutionary effects. The latest ap-
proach, using Type IA supernovae as standard candles, appears promising
from both a theoretical and empirical view at present. The results of the
Supernovae Cosmology Project [10, 14, 15] are summarized in Figure 1; a
competing group, the High-z Supernovae group [11, 12, 16, 17], uses some-
what different methods and achieves a similar result. Both groups find that
distant supernovae are significantly fainter (by nearly half a magnitude)
compared to a sample of nearby supernovae than would be expected in a
cosmological model with €, = 1, such as the standard cold dark matter
(ScpMm) model. The SCP group reports €2, = 0.28 + 0.8 + 0.5 assum-
ing a flat universe (Q,, + Qs = 1) [10]. (Allowing non-zero curvature, the
constraint is 0.8, — 0.6y = —0.2 £ 0.1.) (€; is the ratio of the en-
ergy density in component i to the critical density, p. = 87G/3HZ, where
Hy = 100h km s ! Mpc!. We use i = m for the total (baryonic and
nonbaryonic) matter density, ¢ = b for the baryon density, i = r for the ra-
diation density, ¢ = A for the cosmological constant or vacuum density, and
i = @ for quintessence.) Although the results are impressive, one should
recall the sorry history of past attempts at long-distance, standard candles:
in a nutshell, the initial, small statistical errors are ultimately replaced by
large systematic uncertainties. In the case of Type IA supernovae, the most
worrisome aspects are that the luminosity of supernovae may evolve with
red shift in such a way as to mimic the predictions of accelerated expansion
[18] or that dust at large red shift may make supernovae appear fainter
than expected for a decelerating universe. Considerable efforts are already
underway to test these possibilities.

If confirmed, cosmic acceleration can be interpreted as evidence for a
substantial cosmic energy component with negative pressure. According to
Einstein’s theory of general relativity, the scale factor a(t), which represents
the expansion of the universe as a function of time, satisfies the differential
equation:

A7G

d:—T(P‘F?)P)G (1)

where G is Newton’s constant, p is the energy density, and p is the pressure.
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Figure 1. Observed brightness (magnitude) vs. red shift for Type Ia supernovae observed
at low red shift by the Calan-Tololo Supernova Survey and at high red shift by the Super-
nova Cosmology Project (SCP) (with 1o error bars) compared with model expectations.
The standard cold dark matter model (ScpM) has Q,, = 1; OcbMm is the best-fit open
model and has Q,, = 0.3; and AcpM is a flat model with Q,,, = 0.3 and Q,, = 0.7. The
effect of a cosmological constant accelerating the expansion rate (as in ACDM) is seen as
a relative ‘dimming’ of the distant SNIa compared to decelerating models. Similar results
have been found by the High-Z Supernovae team (Riess et al.).

Baryonic and nonbaryonic cold dark matter are essentially pressureless, and
radiation has positive pressure, p = p/3. If the universe contains only these
energy components, then, according to Eq. (1), the universe is decelerating,
a < 0. Note that this equation does not include explicitly the spatial cur-
vature, so deceleration occurs whether the universe is open, flat, or closed
if the pressure is non-negative. If the universe is found to be accelerating,
there must be an energy component pg with negative pressure pg such that
Ptot +3ptor < 0, 0r pror < —piot/3 < 0, where pyo is the total energy density.
Since pg + pg > 0 for any physically plausible negative pressure compo-
nent pg (the positive energy condition), then pg must be at least one-third



the total energy density, pg > pot/3 (assuming all other components have
non-negative pressure) in order for @ to be greater than zero.

Evidence for a flat, low-density universe — “Cogito ergo sum”: A strong
case for a negative pressure component already existed and was presented
forcefully several years ago [19], well before the supernovae data indicated
an accelerating universe [15]. The argument relies on combining three ob-
served features of the universe and an argument I entitle “cogito, ergo sum.”
First, the argument rests on the observation that the total mass density of
the universe is less than the critical density predicted for a flat universe.
While the observations were controversial for many decades, today at least
eight different methods of constraining the mass density exist: cluster abun-
dance, cluster abundance evolution, the mass-to-light (M/L) test, I' = Q,,h
as determined by large-scale structure, baryon fraction based on x-ray ob-
servations of clusters, gravitational lensing of massive clusters, and the age
of the universe as inferred from globular clusters compared to the Hubble
age determined from measurements of the Hubble parameter [21, 22, 9, 20].
Remarkably, all eight methods agree that the mass density is less than half
the critical value [19, 20]. It is difficult to imagine so many different mea-
surements with different systematic uncertainties reversing themselves to
recover a good fit to an Einstein-de Sitter (€, = 1) universe.

The second assumed feature is that the universe is flat. Some would
argue that flatness is a necessary condition based on confidence in inflation-
ary cosmology (for which other evidence exists) or based on the classical
flatness-problem argument [23]. Fortunately, the issue can be decided by
observation rather than relying on theoretical arguments alone. The key
observational test is the angular scale or, equivalently, the multipole mo-
ment (£) of the first acoustic peak in the cosmic microwave background
(CMB) temperature anisotropy power spectrum [26]. The power spectrum
is the Legendre transform of the CMB temperature angular autocorrela-
tion function. The shape of the power spectrum as a function of £ is an
extraordinarily sensitive test of cosmological models and their parameters.
A prominent feature is a series of peaks resulting from acoustic oscilla-
tions of the baryon-photon cosmic fluid. See Figure 2. The oscillations are
caused by density perturbations, such as those created during inflation. In
the case of inflation, if the density can be decomposed into a sum of fourier
modes with different comoving wavelengths, then comoving wavelengths
longer than the Hubble horizon are frozen at some amplitude. When the
sound horizon grows to be comparable to the wavelength, the mode be-
gins to oscillate. The oscillation is due to a combination of gravity, which
causes the amplitude to grow as baryons are drawn together in regions of
high density, and the pressure of the baryon-photon fluid which pushes the
baryons apart when the amplitude is too high. In measuring the tempera-
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Figure 2. The cosmic microwave background temperature anisotropy power spectrum is
shown as a function of angular scale. The multipole ¢ corresponds roughly to an angular
scale of /¢ radians. Flat models (2, + Qa = 1), such as the standard cold dark matter
(SCDM) model with ,, = 1 and the best-fit ACDM model with ,, = 0.3, produce
an acoustic peak at £ =~ 200 (about one degree on the sky). Shown also is the pre-
dicted anisotropy power spectrum for the best-fit open (OCDM) model with adiabatic
fluctuations.

ture anisotropy on different angular scales, one is probing different modes
at different stages of compression and rarefaction. The first acoustic peak
corresponds to the mode undergoing its first compression; that is, the mode
whose wavelength is equal to the sound horizon at recombination. The mag-
nitude of the sound horizon is relatively insensitive to most cosmological
parameters, and, so, can serve as a kind of “standard ruler.” If space is flat,
then it is straightforward to show that the angle subtended by this stan-
dard ruler on the last scattering surface as seen on the sky today is about
1 degree (or €14, ~ 220). If space is curved (open or closed), the path of
light from the last scattering surface to our detectors is distorted so as to
change the apparent subtended angle. For example, in an open universe,
the sound horizon subtends a smaller angle so that the maximum of the
first acoustic peak lies at a substantially larger value of £ =~ ¢ flat(Qm)_l/ 2,
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Figure 8. Pressure versus red shift plot indicating the evolution of the matter and ra-
diation density compared to a dark energy component with either positive or negative
pressure. According to observations, the dark energy dominates the matter and radiation
energy density today (solid square). If the dark energy has positive pressure in the past,
as well. Since the matter density never dominates, it is impossible to form large scale
structure. On the other hand, dark energy density with negative pressure becomes negli-
gible compared to the matter density in the past, allowing a finite range of time between
z =10* and 2z ~ 1 where matter dominates and structure can form.

Hence, measuring the angle is the most promising method for determining
whether the universe is flat. Already five years ago, with less CMB data in
hand than we have today, the best-fit (adiabatic) open model did not fit the
combination of CMB and cluster abundance constraints at an acceptable
level [19]; the misfit is statistically much more significant today [9].

If subcritical density and flatness are accepted as properties of our uni-
verse, then the only other feature one must assume to prove cosmic accel-
eration is that we exist: cogito, ergo sum. I think, therefore, I am. And, if
I am, there must be an earth for me to stand on, a sun to shine over me,
a galaxy to make the sun, and clustering matter on cosmic scales to make
the galaxy.

How do the three features — subcritical mass density, flatness, and clus-



tered matter — combine to imply a negative pressure component? Consider
Figure 3, which shows a plot of energy density versus red shift (z). The fig-
ure shows the matter and radiation density falling at different rates owing
to the fact that they have different equations-of-state, w = p/p. Radiation
has w = 1/3 and matter has w = 0. For constant w, the scale factor grows
as a(t) = 2/BO+)] and the energy density decreases as p o< a~3(F%),
Now suppose that the matter and radiation density are less than half the
critical density, and the universe is flat, as current data suggests. Then,
there must be an additional dark enegy component that dominates the
universe today. If the component has positive pressure, then the energy
density in this component decreases more rapidly than the matter density
so that the slope in Figure 3 is more negatively steeped than the matter
density. Extrapolating backwards in time, the component dominates the
matter density not only today, but forever in the past. With gravity alone,
structure growth is a delicate balance between the effect of inhomogeneity
drawing matter together and expansion spreading the matter. Only during
the period when €, = 1 does the first effect win and structure grow appre-
ciably. In the positive pressure case, since matter never dominates, it is not
possible to form the non-linear structures (galaxies, clusters, etc.) observed
throughout the universe beginning from the tiny fluctuations observed by
the COBE satellite experiment [28]. (In this case, structure could not grow
by gravitational instability alone, but would require an additional long-
range force or some other new physics.) On the other hand, if the pressure
is negative, the energy density decreases more slowly than the matter den-
sity. Extrapolating backwards in time, a negative pressure component that
dominates the universe today becomes subdominant to the matter density
at some time in the past. If the component has a sufficiently negative w,
the matter will dominate for a long enough period to form the observed
structure via gravitational stability beginning from the tiny fluctuations
measured in the cosmic microwave background anisotropy. To account for
the observed structure, sufficiently negative means w < —0.33 [19, 20],
which corresponds to the regime in which the expansion of the universe
is accelerating. Hence, we see that evidence of subcritical matter density
and flatness, combined with existence of structure, is sufficient to prove the
case for a negative pressure component and, an accelerating universe. (The
argument as presented here assumes w is constant or changing slowly; a
more detailed discussion is required to dispose of cases where w is changing
rapidly for a component, as in the case of decaying dark matter. This is
left as an exercise for the reader.)

Evidence for a high acoustic peak in the cosmic microwave background power
spectrum: The most recent and, statistically, the weakest evidence for a
negative pressure component is based on measuring the height of the first
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Figure 4. The triangle plot represents the three key cosmological parameters — Q,,
Qa, and Qr — where each point in the triangle satisfies the sum rule Q,,, + QA + Q = 1.
The central horizontal line (marked Flat) corresponds to a flat universe (Q, + Qa = 1),
separating an open universe from a closed one. The diagonal line on the left (nearly along
the A = 0 line) separates a universe that will expand forever (approximately Qa > 0)
from one that will eventually recollapse (approximately Qa < 0). And the light-gray,
nearly vertical line separates a universe with an expansion rate that is currently decel-
erating from one that is accelerating. The location of three key models are highlighted:
standard cold-dark-matter (ScDM) is dominated by matter (2, = 1) and no curvature
or cosmological constant; flat (AcbMm), with Q,, = 1/3, Qa = 2/3, and Q = 0; and Open
CDM (OcbMm), with Q,, = 1/3, Q4 = 0 and curvature Q; = 2/3.
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acoustic (Doppler) peak in the CMB temperature power spectrum [24, 25],
We pointed out above that the position of the acoustic peak as a function of
multipole number (neglecting its height) is a measure of the flatness of the
universe, and so supports the previous argument for negative pressure [26].
Now we point out that recent observations suggest that the amplitude of the
peak is substantially higher than the value predicted for the standard cold
dark matter (CDM) model [9, 27]. Various factors can account for the dis-
crepancy: a negative pressure component, higher than anticipated baryon
density, lower than anticipate Hubble parameter, and positive spectral tilt
are all examples [24, 25]. Given what is already known about constraints on
the baryon density and Hubble constant from other observations, a nega-
tive pressure component is the most likely explanation for the peak height.
Improvements in measurements over the next few years based on long dura-
tion balloon experiments (such as BOOMERANG) and the MAP satellite
experiment will dramatically reduce the current uncertainties. Perhaps the
CMB test for a negative pressure component will be the most compelling
ultimately.

The cosmic triangle: The observational evidence for negative pressure can
be summarized visually in a “cosmic triangle” diagram [9], as described in
Figure 4. The triangle is based on the Friedmann equation,

H?= (-

(d>2 _ 8nG n 871G _ ﬁ @)

a
where H is the Hubble parameter, p,, is the matter density, ps is the

vacuum density, and £ = 0, +1 is the spatial curvature. Dividing through
by H?, one finds

1=Q+ Qa + Q% (3)

where Q,,, = (87G/3H%)ppm, Qn = (87G/3H?)py, and QO = —k/a?H?.
Note that ) is defined to include the negative sign so that € < 0 for
a closed universe and > 0 for an open universe. The Friedmann equation
has been converted to a sum rule in which §2; represents the fractional
contribution of component % to the expansion of the universe. Because the
energy densities in the two components decrease at different rates as the
universe expands, the fractional contributions may change; however, the
sum rule must be obeyed at all times.

Every point in the triangle has the property that the perpendicular
distances to the three edges of the triangle sum to unity; so, if the three
distances correspond to the three €2;, every point in the triangle obeys the
sum rule. The evolution of the universe corresponds to a trajectory in the
cosmic triangle plot in Figure 4. A central goal of observational cosmology
is to determine the point corresponding to the present universe.
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Figure 5. Current observational constraints are represented on the cosmic triangle
plot. The tightest constraints from measurements at low red shift (clusters, including the
mass-to-light method, baryon fraction, and cluster abundance evolution), intermediate
red shift (supernovae), and high red shift (CMB) are shown by the three bands. The
bands for cluster and supernovae measurements represent 1o uncertainties; 1o, 20 and
30 uncertainties are shown for the CMB.

The current measurements of the CMB temperature anisotropy power
spectrum are shown in Figure 2. In the plot, the CMB data is compared
with the predicted power spectra for the best fit standard, open and A cold
dark matter models. The data strongly favors flat models over open models
and moderately favors models with A (or quintessence) over the Einstein-de
Sitter model.

Figure 5 illustrates the constraints from measurements of cluster abun-
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dance, supernovae, and the cosmic microwave background on the parameter-
space. Because the cluster abundance, supernova and CMB are measuring
conditions in the universe in different red shift regimes, the contours of
maximum likelihood are oriented at different angles. As a result, the in-
dependent measurements combine to form an overconstrained region of
concordance. The current concordance region is centered near the ACDM
model with €,, = 0.3 and Q4 =~ 0.7. Figure 5 also illustrates how the cosmic
acceleration of the universe can be deduced from supernovae measurements
alone or, independently, from the combination of cluster abundance (which
constrains the matter density) and the CMB (which constrains flatness).
Because of the high acoustic peak indicated in the most recent CMB results,
a likelihood analysis reveals that the CMB data alone points to the ACDM
model being modestly favored compared to the standard CDM model and
significantly favored compared to the open (adiabatic) model.

3. What are the the explanations?

The candidates for the negative pressure component are a cosmological
constant [4, 19] or quintessence [1, 3]. A cosmological constant is a time-
independent, spatially homogeneous component which is physically equiv-
alent to a non-zero vacuum energy: each volume of empty space has the
same energy density at each moment in time. The pressure of vacuum den-
sity equals precisely the negative of the energy density, or w = p/p =
—1. Quintessence is a time-varying, spatially inhomogeneous component
with negative pressure, —1 < w < 0. Formally, vacuum energy density is
quintessence in the limit w — —1, although the two forms of energy are
quite distinct physically. Quintessence is a dynamical component whereas
vacuum density is inert.

The term “quintessence” was introduced historically in an attempt to
resolve a different problem of acceleration. Namely, in ancient times, the
centripetal acceleration of the moon was inconsistent with the ancient phys-
ical world-view. According to this view, the universe consists of four con-
stituents: earth, air, fire and water. An important property of earth is that
it is the densest and so everything made of earth falls to the center of
universe (from which one concludes that the Earth is the center of the uni-
verse). The moon is problematic in that it has mountain and valley feature
like the Earth, and yet the moon does not fall to the center. One proposed
explanation was that there is a fifth element, or “quintessence,” which per-
meates space and keeps the moon suspended, but which otherwise does not
interact with the other four components. Millenia later, the term is being
re-introduced to resolve another problem of cosmic acceleration. Cosmolog-
ical models composed of four basic elements, baryons, leptons, photons and
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cold dark matter cannot explain the apparent acceleration in the universe
on a grander scale, and perhaps quintessence is the cause.

The prime example of quintessence discussed in the literature [1, 3]
is a scalar field @ slowly rolling down a potential V(Q). The pressure of
a scalar field is the difference between the kinetic and potential energy,
p = %¢2 — V. “Slow-roll,” a condition in which the kinetic energy is less
than the potential energy, produces negative pressure. The notion that
a scalar field can produce negative pressure and cosmic acceleration was
already established with “new inflation,”[6, 7] in which the scalar inflaton
field undergoes slow-roll and drives inflation. The difference is that the
energy scale for quintessence is much smaller and the associated time-scale
is much longer compared to inflation. Although we will consider only the
scalar field example in the rest of the paper, other forms of quintessence are
possible. For example, a tangled web of non-abelian cosmic strings [37, 38]
produces a negative pressure with w = —1/3, and a network of domain
walls has w = —2/3.

3.1. QUINTESSENCE: NOT A TIME-VARYING COSMOLOGICAL
CONSTANT!

Quintessence is sometimes referred to as a “time-varying cosmological con-
stant” or “smooth component,” based on its average effect on the expansion
of the universe. Discussions of a time-varying cosmological constant in the
smooth approximation date back at least as far as the papers by the Russian
physicist, Bronstain in 1933 [39], and the idea has been revisited frequently
over the intervening decades [1, 2, 3]. However, treating quintessence in
this manner oversimplifies the concept to a point where some of the most
difficult theoretical challenges and intriguing possibilities are lost.

A good analogy is the description of inflation as a “de Sitter phase,”
a finite period in which the universe is dominated by a cosmological con-
stant. The description captures some of the gross features of inflation, such
as the superluminal expansion. Yet, a de Sitter phase of finite duration is a
physical contradiction. Once one appreciates that inflation must be of finite
duration, it then becomes clear that a dynamical component is required in-
stead of a cosmological constant, and immediately issues arise: what is the
nature of the dynamical component? how did inflation begin? how did it
end? what happened to the energy that drove the inflationary expansion?
By pursuing these issues, one encounters one of the great surprises of infla-
tion: the existence of tiny density fluctuations following inflation as a result
of the stretching of quantum fluctuations from microscopic scales to cosmic
scales [40, 41, 42, 43]. One is also led to consider the associated problem of
tuning required to insure that the density fluctuations have an acceptable
amplitude. Describing inflation as a de Sitter phase misses these important
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features.

Similarly, describing quintessence as a time-varying cosmological con-
stant is a physical contradiction. Nor can quintessence be properly con-
sidered a smooth component. An energy component which is varying in
time but spatially homogeneous contradicts the equivalence principle. See
Section ITTA. The moment one realizes that full dynamics must be spec-
ified, a host of theoretical issues arise, just as in the case of inflation).
This more serious treatment is only recent. The pioneering work was done
by B. Ratra and J. Peebles in the late 1980’s [3], and, more recently, a
systematic march through these issues has appeared in a series of papers
by R. Caldwell and students R. Dave, L. Wang, 1. Zlatev, and G. Huey
[1, 20, 44, 45, 46, 50, 51, 52, 53]. As a result of their work, many of the
most worrisome aspects of quintessence are well-understood and under con-
trol.

3.2. SOME BASIC THEORETICAL ISSUES AND THEIR RESOLUTION

This subsection raises basic questions that arise when one considers the
dynamical aspects of a quintessence component and the answers that have
been found in recent studies.

Can quintessence be perfectly smoothly distributed? No. A time-varying but
smoothly distributed component is inconsistent with the equivalence prin-
ciple [1, 44, 54]. If the scalar field Q(7, z) is separated into spatially homoge-
neous and inhomogeneous pieces, Q(7,Z) = Q,(7) +Q(7, ), where T is the
conformal time, then, the Fourier transform of the fluctuating component
obeys the wave equation [44]

1
5} + aHSQ} + (¥ + a”V,0)0Qk = — 3 ) ()

where the prime denotes 9/97, the index k indicates the Fourier transform
amplitude, Vg is the second derivative of the quintessence potential V'
with respect to @, and h is the trace of the synchronous gauge metric
perturbation. Even if one sets §Q(7, Z) = 0 initially, 6Q(7, ¥) cannot remain
zero if the source term on the right-hand-side is non-zero. For quintessence,
the right-hand-side is non-zero because @/, is non-zero (the field is rolling)
and, so long as one considers practical models where matter clusters, hj, is
non-zero. Hence, ) cannot remain perfectly homogeneous.

If w =p/p <0, is the sound speed imaginary? Does this mean that inho-
mogeneities suffer catastrophic gravitational collapse? No. The sound speed
squared is dp/dp, which may be positive even though w = p/p is negative.
In many cases (including slow-rolling scalar fields), the sound speed is a
function of the wavenumber, k. At small wavenumbers, corresponding to
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superhorizon scales, the sound speed may be imaginary formally, but this
has no physical significance since superhorizon modes do not propagate. At
wavenumbers corresponding to subhorizon scales, the sound speed is real
and positive [1, 44, 54]. For example, for the scalar field, the dispersion term
in (4) indicates a k- dependent sound speed vZ = (1 — CLZVQQ /k?)~1. Recall
that quintessence has negative pressure because () is rolling slowly. The
slow-roll means that the curvature of the potential is less than the square
of the Hubble damping scale, H? > V og. For modes inside the horizon,
k%/a? > H?, the sound speed is relativistic on scales much smaller than the
horizon (v — 1) and becomes non-relativistic on large scales comparable
to the horizon (vgy — 0). Formally, the sound-speed becomes imaginary on
superhorizon scales, but that has no physical significance because super-
horizon modes do not propagate.

To what extent do scalar fields span the possible ways w can change as a
function of red shift? Scalar fields completely span the space of possibilities
for w(a). Given the evolution of w(a), we may reconstruct the equivalent
potential and field evolution, V(Q[a]), using the parametrized system of
integral equations [35, 36]

2 a0 Jg
V) = T —w@le (31 2+ [* T w@) Q
Qa) = 732:2262 " da 2;(12) exP( [log —+ /ao @ w &)])(6)

Note that we implicitly require the Einstein-FRW equation for H(a) to
evaluate Q(a), so that the form of the potential which yields a particular
equation-of-state depends on all components of the cosmological fluid, not
just the quintessence. For simple w(a), these equations can be combined
to give an analytic expression for V(Q). Otherwise, V(@) can computed
numerically and approximated by a fit.

Hence, even if quintessence does not consist of a physical scalar field,
studying scalar fields suffices to study all possible equations-of-state. The
equation-of-state is sufficient to specify the background evolution. To in-
clude the perturbations due to quintessence, one also needs to determine
the anisotropic stress. If quintessence is composed of strings [37, 38] or ten-
sor fields [48], say, the anisotropic stress cannot be mimicked by a scalar
field. However, the differences in the perturbative effects are typically small
and so a scalar field can be used as a first approximation.

Doesn’t quintessence introduce nearly an infinite number of free parameters
in the choice of V(Q)? (If so, the concept has no useful, predictive power.)
Yes and no. The situation is very similar to inflation. Once one determines
that inflation must be driven by a dynamical energy component, such as a
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rolling scalar field, the concern arises that there are an infinite number of
choices for the inflaton potential energy. In practice, though, there are only
a few degrees of freedom relevant to observations because the observables
depend only on the behavior of the inflaton over the last 60 e-folds before
the end of inflation. During the last 60 e-folds, the inflaton traverses only
a very small range of the potential which can be parameterized by a few
degrees of freedom. Hence, in practice, inflationary predictions only depend
on a small number of parameters, which is why the theory has powerful
predictive power.

Similarly, observable consequences of quintessence occur between red
shift z = 5 and today when the @ field traverses only a small range of its
potential. Thus, the possible potentials V(@) can be effectively parame-
terized by only one or two constants [50]. The constants might be chosen
as V(Q) and V'(Q) today. A more convenient choice is the effective (Q¢-
weighted) equation of state

W= / Q0 (a)w(a)da/ / Q0(a)da, (7)

and the effective first time-derivative w,

W = / dz Qo (2)[i)?/ / dz Qo(2) (8)

where w = dw/dln z. Most observations are only sensitive to w and, in
some cases, W.

Does quintessence require a small mass parameter? No. Consider the simple
case of inverse power-law potentials: V(Q) = M*+*/Q®. Quintessence over-
takes the matter density and induces acceleration when @ ~ M, where M,
is the Planck scale. To have Qg ~ 0.7 today requires V(Q =~ M,) = pp,
where p,, ~ 10747 GeV* is the current matter density; this imposes the
constraint M = (pmM;})l/ (e+4) For low values of o (or for the exponential
potential), this forces M to be a tiny mass, as low as 1 meV for the expo-
nential case. However, we note that M > 1 GeV — comparable to particle
physics scales — is possible for a > 2. Hence, our solution to the missing
energy problem does not require the introduction of a new mass hierarchy
in fundamental parameters. It is the case that V' must be of order (1 meV)*,
and V" must be of order H? ~ (10~*2 GeV)2. But the example shows that
these values can be achieved without invoking a tiny mass parameter [51].

To what extent must the analysis of observations be modified because quintessence
is spatially inhomogeneous? Conventional treatments of the mass power
spectrum and the CMB temperature rely on the mass density being the
only spatially inhomogeneous component. The Press-Shechter formalism
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[46], the computation of the linear mass power spectrum [1, 44], the non-
linear corrections [47], and the CMB temperature power spectrum [1, 44]
all must be modified to properly incorporate the spatial inhomogeneities
in quintessence. In the typical case, the modification is a small, quantita-
tive correction. In extreme cases, the spatial inhomogeneities can produce
anomalous bumps in P(k) (not unlike the bumps reported in some large-
scale structure surveys) and amplify peaks in the CMB power spectrum
(not unlike some recent observations) [49].

Isn’t quintessential cosmology sensitive to initial conditions for QQ and Q
as well as to the potential parameters? It depends. For many potentials
discussed in the literature [1, 3], the initial value of @ and () must be finely
tuned to obtain the correct value of {2g today. The tuning of the initial field
expectation value is required in addition to tuning the potential parameters.
Since the initial conditions for the field are hard to control, the scenario
seems even more contrived than the the tuning of the cosmological constant.
However, as discussed in the next subsection, a large class of potentials has
been found for which the cosmology is insensitive to the initial ) and @
because there exist classical attractor solutions to the equations-of-motion
which result in the same value of {2 independent of the initial conditions
[51, 52, 55].

Isn’t quintessential cosmology sensitive to the initial conditions for 6Q), the
spatial fluctuations in Q¢ No. Without the source term in Eq. (4), pertur-
bations in () would remain small due to the highly relativistic nature of Q.
With the source term, the fluctuations in ) do grow significantly at a rate
determined by fluctuations in the metric which, in turn, are determined by
the clustering matter component [1, 44, 54]. The amplitude of the perturba-
tion as it enters the horizon depends principally on the source term and is
insensitive to the initial conditions in @) itself. In particular, the numerical
difference in predictions obtained assuming adiabatic initial conditions for
0@ (as might be expected after inflation) versus smooth initial conditions
is negligible [36].

Taken together, the answers to these questions go a long way to trans-
forming quintessence from a seemingly arbitrary proposal with many free
parameters and choices of initial conditions to a predictive scenario de-
scribed by few parameters. What remains to be resolved is the cosmic
coincidence problem.

3.3. THE COSMIC COINCIDENCE PROBLEM

The key problem posed by a negative pressure component and, in my view,
the principle motivation for considering quintessence is the cosmic coinci-
dence problem. The problem has two aspects whose resolution may require
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two different concepts. One puzzle is to explain why the energy density of
the negative pressure component, pg ~ (1 meV)?, is so tiny compared to
typical particle physics scales. At present, some discount the current evi-
dence for negative pressure simply because it requires a seemingly extraor-
dinary fine-tuning. However, if the evidence described in Part II progresses
and becomes overwhelmingly decisive in the next few years, which is tech-
nologically feasible, then the view will change. Instead of the small energy
density being a problem for cosmology, it will become a new, fundamental
parameter whose measured value must be explained by particle physics,
just as particle physics is expected to explain ultimately the mass of the
electron. This paper anticipates that day.

However, explaining the small value of the energy density is not enough.
A second puzzle is to explain why the matter density and the energy density
of the negative pressure component are comparable today. Throughout the
history of the universe, the two densities decrease at different rates, so it
appears that the initial conditions in the early universe have to be set with
exponentially sensitive precision to arrange comparable energy densities
today. For example, after inflation, the ratio of vacuum density to matter-
radiation density would have to be tuned to be of order 10719, Since the
ratio is inferred on the basis of extrapolating a cosmological model back-
wards in time, the solution to the initial conditions problem may lie in the
domain of cosmology, rather than particle physics. That is, perhaps the
tuning may be avoided perhaps by changing the cosmological model.

What would be ideal is an energy component that is initially comparable
to the matter and radiation density, remains comparable during most of the
history of the universe, and then jumps ahead late in the universe to initiate
a period of cosmic acceleration. This is quite unlike a cosmological constant.
However, recently, a large class of quintessence models with “runaway scalar
fields” have been identified which have many of the desired properties.

3.4. RUNAWAY SCALAR FIELDS AND THE STICKING POINT THEOREM

Runaway scalar fields are promising candidates for quintessence. We use
the term “runaway scalar fields” [56] to refer to cases in which the poten-
tial V(Q), the slope V'(Q), the curvature V"(Q), and the ratios, V'/V and
V" /V all converge to zero as @ — oo. The potentials occur in string and
M-theory models associated with the many moduli fields or with fermion
condensates [57, 58, 59, 60, 61, 62]. The potentials are typically flat to per-
turbative order but have runaway potentials when non-perturbative effects
are included. Inverse power-law potentials, general functionals with inverse
powers or fractional powers of the field (or condensate) are examples of
runaway potentials.
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A runaway field has a simple but profound effect on cosmology. The
ultimate fate of the universe is sealed: the universe is destined to undergo
cosmic acceleration [56]. The prediction is as sure as if one had introduced
a positive cosmological constant into the theory. The argument is based
on a simple theorem we refer to as the “sticking point theorem”: Given
a runaway potential V(Q), there is a smallest value of the field Q, for
which V'(Qsp)/V (Qsp) < 87Qup/M2 and V"(Qsp)/V (Qsp) < 87G/3; that
is, since V'/V and V"/V converge to zero at large @, there must be a
smallest value (), such that the ratios satisfy these two inequalities for all
Q@ > Qsp. (One could imagine potentials where all () satisfy the inequalities.
Then, the sticking point theorem is trivially satisfied; see below.)

The sticking point theorem says that, for all () > Qsp, the rolling field
is critically damped by the Hubble expansion and the field is frozen. The
word “frozen” is used judiciously — one should imagine a frozen glacier which
slowly flows downhill. In this case, the field flows so slowly downhill that
the energy density decreases much more slowly than matter and radiation
density. The field energy eventually overtakes the matter and radiation,
driving the universe into cosmic acceleration.

The proof is trivial: For any @ > Qsp, it must be that V"(Q)/V(Q) <
871G /3, by the definition of ()5,. Then, we have

V'@ < TV < Xl 1 s V@I= 2, )
where p;, » is the background matter-radiation density, which is positive.
The right hand equation is the definition of the Hubble parameter accord-
ing to the Friedmann equation. The chain of relations reduces to V" < H?,
which is precisely the condition for the @-field kinetic energy density to
be overdamped by the Hubble expansion (assuming the slope, V', is neg-
ligible) so as to force slow-roll and negative pressure [7]. The condition on
V']V is the condition that the slope be negligible. Hence, the sticking point
theorem assures that, once the field rolls past the sticking point, () slows
to a crawl and acts as a negative pressure component. Since the poten-
tial is decreasing, there is nothing to stop ) from ultimately reaching and
surpassing the sticking point. Beyond the sticking beyond, the potential
energy of the ()-field is sufficient to create a Hubble damping that freezes
the field, independent of the value of the matter and radiation density. It
is just a matter of time before this energy density comes to dominate the
universe. The corollary is that it is just a matter of time before the energy
density of the runaway field overtakes the matter and radiation, and cosmic
acceleration commences. For most runaway potentials, the sticking point
corresponds to a large expectation value of the field and a small energy.
This feature of runaway fields satisfies in a very rough, qualitative way the
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condition desired to explain why cosmic acceleration begins late in the his-
tory of the universe when the mean density is small. There remains the
issue of why acceleration commences after 10 billion years rather than 10
million years or 10 trillion years, but the qualitative character of runaway
fields seems, at least to this author, to be an attractive feature which may
well be incorporated in the final answer.

3.5. TRACKER FIELDS AND TRACKING POTENTIALS

There are different ways the runaway field may come to surpass the stick-
ing point, which leads to different cosmological scenarios. We discuss two
examples: tracker models and creeper models.

Tracker fields [51, 52] are runaway fields in which the equation-of-motion
has an attractor-like solution so that the evolution of @) is insensitive to the
initial conditions for @ and . In order to have an attractor solution, one
requirement is that T' = V"”"V/(V')? exceed 5/6 and be nearly constant [52].
The only constraint on the initial energy density in the tracker field is that
it be less than or equal to the initial matter-radiation energy and greater
than the present-day matter density. (As we shall see, this condition is nec-
essary in order for () to converge to the attractor solution before the present
epoch.) This constraint allows an extraordinary range of initial conditions
for pg spanning over 100 orders of magnituder. The range includes the
physically well-motivated possibility of equipartition between quintessence
and matter-radiation. The term ”tracker” refers to the fact that the cosmol-
ogy follows the same evolutionary track independent of initial conditions.
See Figure 6.

The attractor solution has the property that, beginning from the initial
Q and @, Q rapidly converges to the point on the potential where V" ~ H?.
The Hubble parameter H is determined by the matter and radiation den-
sity. As the universe expands and H decreases, () moves down the potential
so as to maintain the condition V" ~ H?. In this sense, the evolution of
the @Q-field controlled by the matter-radiation density rather than evolving
independently according to its own potential. This is the distinctive feature
of tracker fields. The controlled evolution continues until () finally surpasses
the sticking point. Then, its own potential energy density is sufficient to
freeze the field and cause it to overtake the background energy.

What if the initial energy density is far below the value where V" =
H? but Q < Qsp? We refer to this as the “undershoot” initial condition.
Since V"/V is decreasing, lower energy density means that the initial V"
must be much less than H?2. The evolution of @ is overdamped by the
Hubble expansion, and so its value remains nearly constant. The field has
not surpassed the sticking point (@ < @), and the field is only frozen
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Figure 6. Energy density versus red shift for the evolution of a tracker field. For com-
putational convenience, z = 10'? has been arbitrarily chosen as the initial time when
the field begins to roll. The white and grey bars represent the span of of allowed initial
conditions for pg (which corresponds to 100 orders of magnitude if extrapolated back to
inflation). The white bar on left represents the undershoot type of initial condition and
the grey bar represents the overshoot. The solid black circle represents the unique initial
condition required if the missing energy consists of vacuum energy density. The dotted
curve is the attractor (tracker) solution. The solid thick curve illustrates the evolution
beginning from an overshoot initial condition in which pg has a value greater than the
tracker solution. @ rushes rapidly down the potential, overshooting the tracker solution
and the matter density, and freezes. As the universe expands, H decreases to a point
were V" =~ H? and the field joins the tracker solution.

because of the matter-radiation density contribution to H. As the universe
expands, the matter-radiation density eventually decreases to a point where
V" ~ H? and the field becomes unfrozen. The field begins to roll down the
potential with V" tracking H? just as it would if the field had begun on
the attractor solution initially. Ultimately, @) passes the sticking point and
cosmic acceleration begins.

What if the initial energy density begins above the value where V" = H?
(the “overshoot” initial condition)? See Figure 6. In this case, V" > H?
and the Hubble damping is irrelevant at first. The potential is so steep that
the field rapidly accelerates to a condition where the its energy density is
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dominated by its kinetic energy. A field dominated by kinetic energy has
w = 1 and decreases as 1/a’. The field energy rapidly falls compared to
the matter and radiation at such a rate that it overshoots and falls below
the attractor solution, V" ~ H?. Eventually, though, the Hubble damping
red shifts away the kinetic energy and the field becomes frozen after a
displacement of [51, 52]:

3

1/2
AQ ~ (EQQZ) Mp, (10)

where Qg; is the initial ratio of pgy to the critical density and M), is the
Planck mass. (Typically, the initial value of @ is negligible, so Q@ ~ AQ
when the field is frozen.) Now the field is frozen at a point where V" < H?,
the initial condition of the undershoot case. The frozen values of ) =~ AQ
and V" are independent of the potential (since the kinetic energy domi-
nates during the as @) rapidly falls), but they are dependent on the initial
value of pg, as shown in Eq. (10) above. Nevertheless, this is irrelevant
for cosmology since the energy density in () is much smaller than matter
and radiation density during the frozen period. As in the undershoot case,
the field remains frozen until H? decreases to a point where it matches V"
and the field joins the tracker solution. By the time pg grows to influence
cosmology, @ is on the same evolutionary track as if ) and Q had begun
on the tracker solution in the first place.

The tracker solutions lead to a new prediction: a relationship between
2, and the equation-of-state for @), wg [51, 52]. The relationship occurs
because, for any given potential, the attractor solution is controlled by
only one free parameter, which can be chosen to be the value of €, today
(assuming a flat universe). Consequently, once the potential and 2, are
fixed, no freedom remains to choose independently the value of wg today.
There is some variation from potential form to potential form; see Figure 7.
But, the variation is limited and, most importantly, includes a forbidden
region between wg = —1 and wg ~ —3/4.

To construct models with wg between —1 and —3/4, one has to con-
sider rather poorly motivated and fine-tuned potentials. An example is
V(Q) ~ 1/Q% where a < 0.1 is tuned to be a tiny fractional power so
that V(Q) is designed to be nearly like a cosmological constant. Adding a
true cosmological constant to V(Q would also allow wg — —1, but then
there is no point to having the tracker field. The 2g-wg relation we present
is intended as a prediction that distinguishes cases where there is no true
cosmological constant from cases where there is.
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Figure 7. The Qg-wq relation can be illustrated on a plot of wg versus ,, =1 — Qq.
The predictions are shown for various potentials. Note that the forbidden region at values
of wgq less than —0.75.

3.6. CREEPING QUINTESSENCE

An alternative possibility, “creeping quintessence,” [56] occurs for the very
same tracker potentials if the initial energy density in the @Q-field greatly
exceeds the matter-radiation density. Then, as in the overshoot case dis-
cussed in the previous subsection, the field begins with V” > H? and
rapidly accelerates down the potential until the kinetic energy dominates
the potential energy. As before, the field kinetic energy red shifts away as
@ rolls a distance [52, 56]:

/3 1 PQi) )
AQ=/—(14+=In{—== | M,). 11
© 4m ( * 2" (PBi P (1)
Note that this expression is different from Eq. (10) because here pg; > ppi,
where pp; is the initial background matter-radiation density, and the field

rolls farther than overshoot case for the tracker field. The Q-field rolls so far
that it overshoots not only the initial matter density, but also the sticking
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Figure 8. A plot showing the case for creeping quintessence in which the field overshoots
the sticking point and freezes early in the history of the universe. Compare to Figure 6,
in which the energy density eventually joins a tracker solution. Here, once frozen, the
field rolls very slowly for the rest of the history of the universe. Consequently, w is very
close to —1.

point before it finally freezes. See Figure 8. Now, the field is frozen and
remains frozen forever, never joining the tracker solution. Because the field
overshoots the sticking point by a significant margin, the energy density
is tiny compared to the matter-radiation density, and equation of state
is w = —1. The field creeps down the potential for the remainder of the
history of the universe, with pg eventually overtaking the matter-radiation
energy density and inducing cosmic acceleration.

The creeping case differs in several ways from the tracker potential.
First, the creeping scenario is possible for a somewhat wider range of po-
tentials. Since it never utilizes the tracker features, the condition on I" can
be dropped. All that is required is a sticking point at sufficiently low en-
ergy. Second, the scenario is more sensitive to initial conditions because
the value of pg at which @) freezes is dependent on the degree to which the
field overdominates the background density. However, one observes from
Eq. (11) that the value at which @ freezes depends only logarithmically on
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pQi/ pBi, which seems to be a relatively mild sensitivity to initial conditions
[56].

The disadvantage of creeping quintessence is that w is very close to —1
today so that distinguishing it from a vacuum density is difficult. There is
no significant difference in terms of cosmic evolution, astrophysics, or the
cosmic microwave background. In most quantum field theories, @ couples
through quantum corrections to other interactions, and time-variation in )
results in time-varying constants. Here, the field is moving so slowly that
any variation in coupling constants is exponentially small! In addition to
cosmic acceleration, the ultra-slow evolution of couplings constants is an
intriguing consequence of this scenario that would be very difficult to detect
directly.

3.7. WHY IS QUINTESSENCE BEGINNING TO DOMINATE TODAY?

We have arged that tracker models and, with somewhat less precision,
creeper models produce nearly the same cosmic evolutionary track inde-
pendent of the initial conditions for ¢). This is one of the properties desired
to address the cosmic coincidence problem. What remains is to determine
why the track turns out to be one where @) has begun to dominate recently.
The time when ) overtakes the matter density is determined by M for
a quintessence potential V(Q) = M*f(Q/M). The tuning of M might be
viewed as similar to the tuning of A in the case of a cosmological constant.

However, there is more to the issue because different forms of f(Q/M)
produce different families of tracker solutions which overtake the matter
density at different times. To consider this issue, we want to change our
point-of-view. Up to this point, we have imagined fixing M so that (g =
1 — Q,, has the measured value today. This amounts to considering one
tracker solution for each V(Q). Now we want to consider the entire family
of tracker solutions (as a function of M) for each potential form f(Q/M)
and consider whether Q¢ is more likely to dominate late in the universe for
one one family of solutions or another.

In general, Qg is proportional to a3(¥B=v@)  $2(ws=wQ)/(1+ws) where
[51]
20— 1)(wp +1)

1+2(I'—1)

(12)

wp — wWg =

Hence, we find Qg o t¥ where

AT —1)

P= a1 (13)

For two special cases (V ~ 1/Q® and V ~ exp(fQ)), I' — 1 is nearly
constant, and, hence, P is nearly constant as well. The interpretation is
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Figure 9. A plot of P/P, versus t, where Q¢ « t© and Py is the initial value of P. The
plot compares pure inverse power-law (V' ~ 1/Q%) potentials for which P is constant
with a generic potential (e.g., V ~ exp(1/Q)) for which P increases with time.

that {2 grows as the same function of time throughout the radiation- and
matter-dominated epochs. So, there is no tendency for Qg to grow slowly
at first and then speed up later. See Figure 9. The same situation occurs
for Q4 for models with a cosmological constant.

However, for more general quintessence potentials, P increases as the
universe ages. Consider first a potential which is the sum of two inverse
power-law terms with exponents a; < as. The term with the larger power
is dominant at early times when @) is small, but the term with the smaller
power dominates at late times as () rolls downhill and obtains a larger
value. Hence, the effective value of a decreases and I' — 1 « 1/« increases;
the result is that P increases at late times. For more general potentials,
such as V ~ exp(1/Q), the effective value of o decreases continuously and
P increases with time. Figure 9 illustrates the comparison in the growth of
P.

How does this relate to why 2o dominates late in the universe? Because
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Figure 10. A plot comparing two tracker solutions for the special case of a pure power-law
(V ~ 1/Q°) potential (solid line) and a general potential composed of a combination
of inverse power-law contributions (V' ~ exp(1/Q)) (dot-dash). The dashed line is the
background density. The two tracker solutions were chosen to have the same energy
density initially. The tracker solution for the generic example (V ~ exp(1/Q)) reaches
the background density much later than for the pure inverse-power law potential. By this
measure, g is more likely to dominate late in the history of the universe in the generic
case than for a pure power-law potential.

an increasing P means that g grows more rapidly as the universe ages.
Figure 10 compares a tracker solution for a pure inverse power-law poten-
tial (V ~ 1/Q°®) model with a tracker solution for a generic potential with a
combination of inverse powers (in this case, V' ~ exp(1/Q)), where the two
solutions have been chosen to begin at the same value of Q¢. (The start
time has been chosen arbitrarily at z = 107 for the purposes of this illus-
tration.) Following each curve to the right, there is a dramatic (10 orders of
magnitude) difference between the time when the first solution (solid line)
meets the background density versus the second solution (dot-dashed line).
Beginning from the same €, the first tracker solution dominates well be-
fore matter-radiation equality and the second (generic) example dominates
well after matter-domination.

Hence, an intriguing conclusion is that the generic quintessence potential
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Figure 11. The scale factor vs. time for an Einstein-de Sitter model (2, = 1) and three
models with Q,, = 0.3: an open model, a flat model with quintessence (w = —0.7), and
a flat model with a cosmological constant.

has a family of solutions in which € tends to dominate late in the history of
the universe and induces a recent period of accelerated expansion. Although
the trend towards late domination is an improvement over models with
cosmological constant or pure power-law or exponential V' (Q), we have not
answered the quantitative question: why is () dominating after 15 billion
year and not, say, 1.5 billion years or 150 billion years. Yet further ideas
are required.

4. Current constraints and future tests

The observable consequences of quintessence are due to its effect on the
expansion of the universe and its inhomogeneous spatial distribution. Fig-
ure 11 compares the expansion rate of universe for an Einstein-de Sitter
model (2,, = 1) with three models with Q,, = 0.3: an open model, a flat
model with quintessence (w = —0.7), and a flat model with a cosmologi-
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cal constant. The expansion rate is decelerating for the Einstein-de Sitter
and open models and accelerating for the models with cosmological con-
stant and quintessence. For a given (1, the cosmological constant has more
negative pressure and, hence, induces a greater acceleration. The present
epoch corresponds to scale factor a/ag = 1. The figure shows that the age
of the universe increases with acceleration. The open model and the mod-
els with quintessence or cosmological constant predict ages consistent with
estimates based on the ages of globular clusters [21, 22].

Because the spatial inhomogeneities in the quintessence typically have
small amplitudes compared to the density perturbations, they are diffi-
cult to detect. The largest effect is on the CMB anisotropy and the mass
power spectrum on large scales, which is incorporated in computations of
the power spectra for quintessence models [1]. Figure 12 shows the predic-
tions for the CMB temperature anisotropy power spectrum for a series of
quintessence models with different choices of w, €2, and the spectral index,
n, of the primordial density fluctuation distribution. The results are com-
pared to an Einstein-de Sitter model and a model with cosmological con-
stant. As with a cosmological constant, quintessence increases the height
of the first acoustic peak compared to the Einstein-de Sitter model. The
differences in height are due to a combination of differences in equation-of-
state, tilt, and normalization. Note the tiny difference in the shape of the
CMB power spectra at small £ for the quintessence models compared to the
ACDM model. The effect is primarily due to the spatial inhomogeneities in
the quintessence field [1, 36], as well as differences in the integrated Sachs-
Wolfe contribution. Although the spatial fluctuations in the quintessence
field make a large contribution to the CMB anisotropy at small £, the dif-
ference in the CMB power spectrum shape is nearly impossible to detect.
The quintessence fluctuations become important, though, when the ampli-
tude of the CMB anisotropy is correlated with the amplitude of the mass
density fluctuations on large scales. Consider a quintessence model and a
ACDM with nearly indistinguishable CMB anisotropy power spectra. The
two models have nearly the same CMB anisotropy on large scales, but, for
one model, spatial fluctuations in the quintessence makes a significant con-
tribution. Consequently, the contribution of mass fluctuations is different
for the two models. By measuring the mass power spectrum directly and
comparing to the two model predictions, the presence or absence of spatial
fluctuations in the quintessence field can be determined.

Since spatial inhomogeneities contribute significantly to the anisotropy
for the quintessence case but there is no analogue for ACDM case, the frac-
tion of the anisotropy due to mass fluctuations is different. A quintessence
model and a ACDM with nearly indistinguishable CMB power spectra will
predict a mass power spectrum normalization that can differ by a factor
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Figure 12. The CMB power spectrum for an Einstein-de Sitter model (2, = 1),
a flat model with cosmological constant (ACDM), and a sequence of flat models with
quintessence (QCDM). The ACDM and QCDM models are consistent all current cosmo-
logical observations.

of two or more. Hence, correlating measurements of the CMB power spec-
trum and the mass power spectrum is the optimal approach for detecting
the effect of spatial inhomogeneities in the quintessence field.

Based on these effects, Wang et al. [20] have completed a comprehensive
survey of cosmological tests of quintessence models which shows that a
substantial range of €, and w is consistent with current observations.
The allowed region in the €,,-w plane is shown in Figure 13. For a given
combination of €2, and w to be included, there must exist a choice of the
Hubble parameter, spectral tilt, and baryon density such that the model
satisfies all current tests at the 2-o level or better. (See the original paper
for a full discussion and an alternative plot using conventional likelihood
analysis which shows similar results.)

In the future, it should be possible to distinguish the A or creeper
regime from the tracker regime with improved CMB anisotropy measure-
ments combined with other cosmological observations [50]. The wider the
difference between the actual w and —1, the easier it is to distinguish @
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Figure 13. The region of the Q,,-w plane consistent with current observations and the-
oretical constraints. The black strip on left corresponds to the allowed range for models
with a cosmological constant or creeping quintessence. The grey region on right corre-
sponds to tracker models. The gap spanning —1.0 < w < —0.75 is allowed observation-
ally, but does not fit within the tracker or creeper scenarios. (This range appears to
require fine-tuning of initial conditions or more exotic potentials.) The dotted region is
the 1-sigma best-fit according to maximum likelihood analysis. The markings around the
allowed region indicate the measurements which delimit each boundary: Hubble constant
(H), big bang nucleosynthesis (BBN), baryon fraction (BF), supernovae searches (SNe),
cluster abundance (os), power spectrum tilt (ns).

from A. Measurements of the CMB power spectrum constrain models to a
degeneracy curve in the €,,-w plane; along the degeneracy curve, changes
in Q,,, w and h combine to make the power spectrum indistinguishable
[50]. The effects of gravitational lensing on the CMB, which may be de-
tectable by measuring the spectrum at very small angles, reduce but do not
totally eliminate the degeneracy [50]. Measurements of the Hubble param-
eter, deceleration parameter, or matter density can break the degeneracy,
as can, perhaps, measurements of gravitational lensing arcs or improved
luminosity-red shift measurements for supernovae [50, 63, 64, 65, 66]. Davis
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has suggested a more direct approach in which measuring velocity disper-
sion (line-widths) of clusters as function of red shift is used as a cosmic
barometer.

5. Theoretical Challenges

The quintessence scenario has progressed from a somewhat arbitrary and ill-
defined concept with many free parameters to a well-defined and predictive
proposal. Some of the key results have been:

— strong evidence for cosmic acceleration is found in measurements of
the luminosity-red shift relation for Type IA supernovae and in the
CMB temperature anisotropy (Section 2);

— in order to form large-scale structure from primordial, adiabatic den-
sity fluctuations, a negative pressure component of dark energy is re-
quired if the universe is flat and the matter density is significantly less
than the critical density, as present observations indicate (Section 2);

— quintessence is stable against gravitational instability even though it
has negative pressure (Section 3.2);

— quintessence models have predictive power because all observational
predictions are dependent principally on two parameters, the € g-weighted
average of the equation-of-state, w and its time derivative (Eq. 7) (Sec-
tion 3.2);

— a large class of models described by “runaway potentials” lead in-
evitably to cosmic acceleration late in the history of the universe (i.e.,
well below the Planck scale) (Section 3.4);

— there exists a class of “tracker potentials,” which includes a large sub-
class of runaway potentials, with an attractor solution such that the
cosmic evolution is insensitive to initial conditions (Section 3.5);

— tracker models predict a relation between 2, and w today which is
distinguishable from the prediction for a cosmological constant;

— another class, “creeper potentials,” does not utilize attractor solutions
but the cosmic evolution is nevetherless only mildly (logarithmically)
dependent on initial conditions (Section 3.6);

— for creeper potentials, w is nearly —1 today, which is impossible to dis-
tinguish from a cosmological constant using cosmological observations;

— current observations are in complete concordance with a substantial
range of quintessence models, including tracker and creeper models, as
well as models with a cosmological constant (Section 4).

Runaway fields and tracker/creeper potentials appear to be endemic to
many unified theories, including string theory and M-theory. Furthermore,
in the brane-world picture with matter-fields confined to 4-d domain walls
and with gravitational interactions across the bulk, it is difficult to arrange
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a constant energy density in low-energy, 4-d effective theory. In the 5-d or
higher dimensional theory, a small vacuum energy on any one brane or in
the bulk separating branes induces an expansion of extra-dimensions. The
extra-dimensional radius or length is a scalar field in the low-energy, 4-d
effective theory. From the point-of-view of the 4-d theory, the expansion
of the extra dimensions appears as a change in the expectation value of
the field so as to reduce its potential energy. The expansion rate reduces
from exponential to power-law in time. In this sense, a vacuum density in
the high-dimensional brane-world can appear as quintessence in the low-
energy, 4-d effective theory [67]. Similar arguments can be posed for general
supergravity theories without invoking higher dimensions. Although none
of these arguments are rigorous, they lend support to the quintessence
proposal and suggest directions to search for a specific candidate for the
quintessence field.

Significant theoretical challenges remain. Obviously, one goal is to iden-
tify the quintessence scalar field or to replace the field by some dynamical
mechanism. Perhaps a more satisfying solution to the coincidence problem
can be found which explains why quintessence could not have dominated at
a much earlier epoch. A second issue is whether quintessence induces fifth
force effects and time-varying constants which are inconsistent with known
experimental constraints [68]. For generic, light scalar fields, a dimensional
estimate suggests that the effects would exceed current experimental lim-
its [69]. To avoid the problem, a dimensionless parameter expected to be
of order unity would instead have to be set to less than 10~°. Whether
this tuning is problematic is a matter of judgment; one must recall that
the problem which quintessence addresses is at the 10190 level, so perhaps
the tuning is acceptable. Or, perhaps the tuning is not needed because the
scalar field has suppressed couplings for reasons of symmetry. A third is-
sue is the time-honored question concerning the cosmological constant: if
quintessence accounts for the current cosmic acceleration, why is the vac-
uum density zero (A = 0) or, perhaps, non-zero but much smaller than
the quintessence energy density. A fourth issue is whether there is any
connection between accelerated expansion of the past (inflation) and the
accelerated expansion of the present, as suggested by Peebles and Vilenkin
[70]. Finally, the quintessence scenario must be integrated into fundamental
theory. In many ways, the list of challenges are similar to the challenges for
inflationary cosmology, the cosmic acceleration of the past. Perhaps nature
is giving us a message.
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