Problem 11. Periodic potential
As a simple model of an electron moving in a crystal, consider a single quantum particle moving (nonrelativistically) in one dimension in the sinusoidal potential

\[V(x) = V_0 \cos(Kx). \]

Treat this potential as a perturbation to the free particle, using the basis of momentum eigenstates. It is convenient to use “periodic boundary conditions,” which amounts to wrapping the line around into a circle, with \(N \) periods of the potential around the circle. We are interested in the limit where \(N \) is large.

(a) For a state with generic momentum \(\hbar k \) there are no degeneracies. Using non-degenerate perturbation theory, solve for the eigenenergy to second order in \(V_0 \) and the eigenfunction \(\psi(x) \) to first order in \(V_0 \). For what ranges of \(k \) and \(V_0 \) are these results reasonable approximations?

(b) For \(k \) near enough to \(\pm K/2 \), the near-degeneracy of the two states with \(k \) near \(\pm K/2 \) means that simple non-degenerate perturbation theory is not appropriate. For these cases obtain the eigenenergies and eigenfunctions in the approximation where you include only the contribution from these two near-degenerate eigenstates, so the Hamiltonian may be expressed as a 2 \(\times \) 2 matrix. Confirm that your results match well to those of part (a) for small \(V_0 \) as \(k \) moves far enough away from \(\pm K/2 \). What is the magnitude of the gap in the spectrum of this particle’s Hamiltonian?

Problem 12. Shaken oscillator
Consider a single harmonic oscillator with frequency \(\omega \) and a small time-dependent perturbation

\[H = \frac{\hbar^2}{2m} + \frac{m\omega^2 x^2}{2} + \epsilon(t) x \]

with

\[\begin{align*}
\epsilon(t) &= 0 & t < 0 \\
&= \epsilon & 0 < t < T \\
&= 0 & T < t
\end{align*}\]

The particle starts out in the ground state.
(a) Compute the expectation value of x as a function of time $t < T$.

(b) Using first order perturbation theory, find the transition probability for the particle to end up in the first excited state. Explain what happens for $T = \frac{2\pi}{\omega}$.

13. Einstein A en B coefficients

Consider a system that consists of atoms with two energy levels E_1 and E_2 and a thermal gas of photons. There are N_1 atoms with energy E_1, N_2 atoms with energy E_2 and the energy density of photons with frequency $\omega = (E_2 - E_1)/\hbar$ is $W(\omega)$. In thermal equilibrium at temperature T, W is given by the Planck distribution:

$$ W(\omega) = \frac{\hbar \omega^3}{\pi^2 c^3 \exp(h\omega/k_B T) - 1}. $$

According to Einstein, this formula can be understood, by assuming the following rules for the interaction between the atoms and the photons

- Atoms with energy E_1 can absorb a photon and make a transition to the excited state with energy E_2; the probability per unit time for this transition to take place is proportional to $W(\omega)$, and therefore given by

 $$ P_{\text{abs}} = B_{12} W(\omega) $$

 for some constant B_{12}.

- Atoms with energy E_2 can make a transition to the lower energy state via stimulated emission of a photon. The probability per unit time for this to happen is

 $$ P_{\text{stim}} = B_{21} W(\omega) $$

 for some constant B_{21}.

- Atoms with energy E_2 can also fall back into the lower energy state via spontaneous emission. The probability per unit time for spontaneous emission is independent of $W(\omega)$. Let’s call this probability

 $$ P_{\text{spont}} = A_{21}. $$

A_{12}, B_{12} and B_{21} are known as Einstein coefficients.

(a) Write a differential equation for the time dependence of the occupation numbers N_1 and N_2.

2
(b) What is the lifetime of the excited energy level E_2 at very low temperature?

(c) Determine the distribution $W(\omega)$ in thermal equilibrium as a function of the Einstein coefficients.

Assume that the ratio N_1/N_2 in thermal equilibrium is given by the Boltzmann factor

$$\frac{N_1}{N_2} = \exp(\hbar\omega/k_B T).$$

(d) By comparing the result of part (c) with the Planck distribution, show that

$$P_{abs} = P_{stim} = \langle n \rangle P_{spont}$$

where $\langle n \rangle = 1/(\exp(\hbar\omega/k_B T) - 1)$ is the average number of photons with frequency ω. Give an interpretation of this formula. When is spontaneous emission dominant, when stimulated?